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THEORY OF FAST TECTONIC WAVES®

V.N. NIKOLAYEVSKII and T.K. RAMAZANOV

A two-dimensional model is proposed for the propagation of tectonic stress
waves that are the trigger of earthquakes in seismcactive regions, and

are due to bending-compression of the lithospheric slab on the asthenospheric
surface flow thereby neglecting inertia forces. The lithosphere is
modelled by a thin elastic slab, and the asthenosphere by the flow of a
highly viscous incompressible fluid. Their interaction occurs because of
the presence of a vertical shift and the action of viscous tangential
forces on the lithosphere-asthenosphere interface. To obtain a system

of linear equations, longitudinal andtransverse potentials are introduced.
The periodic low-intensity waves turn out to be standing waves, although
also diffusely expanding if there is just no solid-body displacement of
the lithosphere on the asthencsphere. If motion of the lithosphere over
the earth’s crust exists, then solitary waves are possible that take their
energy from the stationary asthenospheric flow.

The tectonic waves under consideration /1,2/ with characteristic
periods of 2,3,6,11 years and propagation velocities of 10-100 km/yr are
extremely slow compared with seismic waves, but are sufficiently rapid in
the time scale of crdinary tectonic processes, comprising millions of
years. The reality of the existence of such waves can be judged, for
instance, from the recently detected /3/ change of the tecteonic stresses
{(with an 11 year cycle and an amplitude of the order of 0.1 GPa) in the
subductable lithospheric slabs. The characteristic shear modulus & of the

lithosphere and the viscosity 1 of the asthenosphere are estimated by
the numbers 5.1¢9¢ Pa and {u** Pa,sec, and 10 Pa and 10t Pa,sec,
respectively‘ consequently, the relaxation time w6 of processes in the

'!lthcev-\l-\nvp s 4-‘»-w~ regu demdtm mrAnyr AfF Ffyeam 1w IO vears only fory +thse
lithesphere has the reguisite order of frem 1 - 30 years only for the
"llthosphere + asthenosphere" complex. This suggests the construction

£ an adeguate model of the process by analogy with surface waves on a
moving film of fluidé /4, but by re;;ac;ng the capillary layer by an elas
plate. The adeguacy of sguch an apprcach was confirmed by a simple
preliminary analysis /2/ cf a Oﬁe-ulﬂénsl”nal process, Meanwhile, the
actual preocesses occur along two-dimensicrnal lithospheric slabs, which
requires the cconstructicn of a two-dimensicnal theory as well as a more
careful ccnsideraticr. of the forces acting orn the lithospheric slab.

bear in mind that the width of the lithosphere 2k andé

1. 1In comstructing the theory we
o 1 the velecity °~ 10 cm/yr of the stationary

the asthenosphe*e 2H , of the order

. s mmela PRI m e A0 — G0 e foy  Aare
flow in the asthenos aelc, i iU FAELN CESYY,, aie
measurablie, however, for 1 i i : elastic systems.
We cons*der the st : Gf in i : y ficating on & viscous incompressible
Lect 4 i ces in the momentur balance
ssip) o
= g0 Lome=1, 2.3 (1.1

where cmﬁ)are the stress tensors, . is the density, g, = g 1is the acceleration due to gravity,
[ is the unit tenscr, where the z,. 2, axes are in the horizontal plane while the T

axis is directed intc the depth. Summation is over the subscript m. Averaging of (1.1) over
the transverse layer thickness 2,V < 1, < 7% connects the total stresses N, in the
transverse layer secticns with the contact forces

: 3% K2y . (1) kD N |
2yt — 05 (25) = prgibia (25 N — 25T (i.23

1)
o
a3}
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Here v is the deflection of the plate middle surface N<Ch~ H <212, = —h — 1, 7,09 =

2 = h 4 1, 2, = h — 2H. % is the wavelength, i, j= 1, 2.
We seek the field of horizontal velocities in the liquid layer in the form

al’, aq. o\ s — —
v (o= ) (1 2 )= o0 = TN (1 ) .3
where U;{z;, k + 1, 1} is the non-stationary horizontal shift of
m——— the lithosphere in the plane of contact with the asthenosphere,
[ ih PES st and @8q,; 6t is the non-stationary head velocity component due
zZ — to the ascent (descent) of the lithospheric slab. The stationary
28 {{ > 0) lithosphere w; and asthenosphere u;° velocities
7 satisfy the continuity equation 8w, dx; =0,8r,°8z; =0 in a
ez two-dimensional plane, and are of the same oxder of magnitude
I3 in absolute value as the non-stationary velocities: ° ~ u® ~
8l 9t ~ dg ot
Integration of the continuity eguation du,dx, = 0 acreoss
the ligquid layer connects the mean velocity {(r;» with the values 1r; on the horizontal
boundaries

0 1 . ) ;
‘-,‘_: Ry o frgth — 2H)y—vgth = M)} =10, (1.4)
,
o== \ ©dn
[y

Substituting (1.3) intc (1.4), taking the equalities pg{h — vy = ot vy3(h - 2H) =0
into account, we reduce (1.4) to the eguaticn

sl 6% .
R T ST i L (1.5)
ot at o, 3 ot oz,

fer the vertical displacement 1n on the contact between the asthencsphere and the lithesphere,
neglecting second~ and higher-order infinitesimal terms.
The fluid is assumed to be Newtonian, i.e.,
(2 : oy o,
Oim ==~ pb, = 1t [ *.*'g:;l‘} (1.6)
N T /

where p is the pressure., Because ¢f the representaticn (1.3) we hen¢e cobtain expressions for
the contact stresses as well as for the average stresses (with respect tc the width of the
asthenospheric layer)

[+ 2 ol
O35 (T Jo— 1 r}:mp-«-_u-m;: (1.7
2, ' ) R T e
G§3 (T fi~ My fj==p {W -+ =g e T e T W — W VE
@ 9 I N U T LT TN
i, h—2H. hi= o T w v ug}
) - - 6 [0y UYL ey S
65 (25 h+m, )= — pb;; — ?‘{7{\""’6;]. - ma:‘. T\ T )
J i
L YN LA S LT /% Y K A £ L |
H Fhat | X oz, ot \ oz oz, e, - bz, T Gt \ By oz, /]!

Substituting (1.7) into (1.2} ané eliminating the vertical fﬁisplacement by using (1.5},
we reduce the average flow eguations in the asthenosphere to the simple form

. O, w B /e . 1 26 8¢p>
i AN (FEE T L P (1.8)

where V2 is the two-dimensional Laplace operator.
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2. we shall give the displacement distribution in the lithosphere according to the
is the displacement in the middle

Kirchhoff-Love hypothesis /5/ 0 ;= u;— 2s00'8z;, where y;
plane. Hence, (1.5) takes its final form

w}zH%VEan—az—-(ui—L«%»cpi)zO

at 0z'.

Furthermore, the elastic stresses are defined by Hooke's law /5/

1 — a2

{7 aui Qu;
erj]‘ e;;= ( 2 }

2N\ Oz, oz,

= o = (1 —vje; -+ veéﬁ—-za{(i_v)%%%vwnéﬂ

where ¢;; 1is the strain of the middle plane that is thereby related to the total stress in

the lithosphere
2hE

T 1
Nij= T3t [(4 —w)ei; + vebyy] (2.3}
Here E is Young's modulus of the slab, and v is its Poisson's ratio.
Tc £ind the contact stresses in (1.3) for the horizontal lithosphere motion (k= 1), the
continuity conditions should be used for the forces at the contact
34 1 m, 9 [§3) @) R
013—013"(011‘—'011)‘—“4‘ {012 01.)% (2.4
o\ @ @ 611 ¢ a3, o
Ogy == Opy — (O3 —~ 043 s (ol — of3) «—‘?}-» . O == ol
and the analogous conditions on the boundary z53= —h <+ 7
a0 035 LM e
ok = (0} — Q) P vy (2.5}
Oy = 0’3.‘—“@»} m’ oy d’j FAp—
oy
where (,;, @, are the overlcad components, Substituting (2.3)-(2.5) inte (1.2}, and taking
the representatiorns (1.7) and (2.2Z) into account, we obtain after linearization
2ERH 1 s . 9 ) oq; 6“: ¢ 3 PR
T f\" Ui = [U/ 2H)— T = T Vi U (2.6}

where products of the type [p(z,.h — w. #) (ER)] dn'dx; have alsc been neglected.
owr, method /6/.

To find the glab bending eguationg we use & well—kn

TR

inte the first twe e:‘,-l‘bfw’* Egs, (1.1} fer k=1

L
95 Exyg ey ! gy 1
T T Tov ap T s o (= ),

Integrating (2.7, for a variakle upper limi
tc be expvessed in terms of the vertical :‘xispla
the result in the third eguation of (1.1} and in
between —h - 1 and h — 1 we obtain the bending

toin 7,

eguatiorn

{1

DVin=2pigh - 03@ (fr — M} — O3

We substi

tute (2.2}

(Z

enables the stresses themselves o,

i
cement and the centact stress,
tegrating the latter with respect to Ty

{(—Fh—m)—

En?

T —?

] }\l ([ D.._.__'.?..,.,._._-_.
1oy (h=m)—o05 (—h—m)], D=-3 :

Furthermore, by conditions (2.4) and (2.5) and the representations (1.

2y, .7y ez

(2.3), both the viscous and the tctal horizontal forces can be introduced directly into

After some reducticrn, we obtairn, neglecting squares of
(2.8),
o= plr b= t)=2mgh - Q0 — DV -

[ Aoy @ Coas oty
{3 Ty e N e
uh ! IH ] ot 1 » i 9z, 07,
win o, L g,
AT 2H [Tater, ZH ot or;

where N, (2k) corresponds to the initial state of stres

3 du
b [ (= ]—

s of the slab,

(25
X

(2.
the perturbations of the variables in

(2.

Qubsti tuting

and
g}

9)

We integrate the third egution in (1.1) and the continuity equation with respect tc the

variable z, for k=2

= pyx—g{xs — h—1)=u Q Vztadra*p(

h-

Gy dvs
clza Oxp

h-m

(

2.

109
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o %4 iz, (2.11)

Substituting (2.11) into (2.10), taking account of (1.3), and integrating the result
over the intensity of the liquid layer, we obtain the following relationship between the

contact and mean pressures:

3 poomo, T )2 v —
po= 0> — o8 (H — 1)+ 7 G +u{h— 15 H )57 ¥ (2.12)
whH? 9 Puy | pHT 8 gy O
5= % VR, 5o o,

On the basis of (2.12), the bending Eq (2.9) is converted to the form

(p>=q-——P2E‘1 .3 a: p(_h_—-H+ w)_vz (2.13)
LU Gl S VI
B L Vane— DV — g, 2 {1+ )

5
RrHE 8 T2 9u, _;“_h__a¢
5 ot = 6z, = 2H dloz,
(g = 20:8h + pogH + Qy —qiy = Nif + h (20:8h + Q) 6;;—04))
Therefore, a closed system of equations of motion of the asthenospheric fluid (1.8),(2.1)
and of the non-stationary strain Egs.(2.6), (2.13) of the lithospheric slab for the six desired
variables %, u;, ¢;, {p> is obtained.

3. We introduce the wave potentials ¢ and ¥ such that

u)=

A 4 s 4
o) oz ! U= gx? ary (3.1)
Then after eliminating the variables u; {(p) the equations of motion mentioned are

separated. The first equation is cbtained from (2.6) and corresponds to the non-stationary

redistribytion of the rotational potential

- aq . oar° .0
(1 _V)"'V"}'—’;d,‘wq' - 53;‘,";‘,—57'—}831,, (TI;—— 0;1 ):0 (3.2)
J J J
= ZEhH,r(p(l —v1)

where ¢3; 1s an alternating termscr. Applying the vortex operatien to (1.8) and using
relationship (3.2), we obtain

2 | du ”
i;f_pq-_vzq')_gsh Y0 (3.3)

ax
F)

; B2 eoye FVE o

It can therefore be seen that shear perturbations cannot result in a rise in the middle
plane of the lithosphere; such motions are separated off from the bending. If free vibrations
corresponding to (3.3) (without taking account of the stationary shear motion of the
lithosphere) are sought in the form ¥ = ¥, exp [i (k;z; — ot)], we obtain the dispersion relation

ATl LY P WA 3.4)

B 4B AR
T = Epnryey7Em

which means that the shear tectonic wave is not a travelling wave: the initial perturbations
damp out "on the spot" without translational shifts.
Egs.{2.1) and (2.6) yield for the longitudinal wave potential @
8 , 3
sp—2.0 12 o~ Loy 29
w0 — 2= V0 =~ (2h - H)— V -5 = =0 (3.5)

If the deflection 7 is identically zero, (2.6) reduces to the well-known Eq./l/ of
tectonic waves for the simple horizontal compression-tension of the lithosphere

#20 p—+%) @

T8z T T ERH ot (3.6)

In the general case (3.5) should be supplemented by (2.1), which we will now write in
the form
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JCHAT S T BRI WL - SO 2T (3.7
3 6taxi H ot a8 ot T

as well as by the result of applying the divergence cperation to the viscous asthenosphere
flow Eq. (1.8). Taking account of (3.7) we write that equation in the form

30 L vip — H(S!zMH}—-Wq—S—-—mffi—a-V“() (3.8)

which in combination with (3.5) determines the effective system of two equations for the
deflection 1 and the potential .

4. We consider space-time D = D, ex

time longitudinal tectonic perturbations of the t}pe 1 . exp li
(hzy — ot)], 1 = 1, exp i (k;z; — wt)l. Then taking account of (2.13) we reduce (3.5) and (3.8)
to a homogeneous algebraic system
2HE (xi? — 2i0) O, — i0 {3 — 2H (2h + H) kn, = 0 (4.1}
iHE [15 — 10H (H — 2k) k* — 2HK CD* = iwl15 —
10H (3h — HY k¥* ~ H* (’?OhH + 20n° ok —
ZhHS) — 5 (Fu )H Y } Ne =0
Y = 2DHE* — 2Hgikik; — 3Hpg
if g v, w7 are constants; summation is over the subscripts i, j. System {4.1) has a
non-trivial solution if the following dispersion equation is satisfied:
(15 — 100H2E> — 2H 3kt — 4HOKS) X7 — (4.2)
L (16— 10(3h— H) HE — (20bH — 20l — TH?) Hopt —
T L Ul LA G U7 )) - G MY S UL
=i hE g T—E P E

It can be shown that for real values of the parameters of the "lithosphere + asthenosphere”
a w

system; the roots of this eguatien will correspond to long standin

be extended but not displaced translat;onal}.y

avsc Ay 2H, which can
aves A all, which can

Indeed, for i3 M.l ~ i E~ 103" Pa, 3pncll ~ 1070 Pa, a1 g, ~ 210 Pa,m we have real
DTt = PR Y= =y RN T T B O e SO ey sme ameimmd 31 Fho oYty Asmwiernkdian AL Elha voasin e mddira mvimdd Ao
Yootus, where A U glinougn it was asiumes in the very Geprivation ©I tne resu.itative eguations

that 7> IH.

Ancther version of the analysis /7/ showed that for /. < 24 the deduction concerning
no translational displacement remains vali&. The origin of travelling eaves is explained by
the action of either a large initial horizontal force .\, or constant asthenospheric flows

apparently caused by a shift of the lithosphere.

5, The possibility of the existence of sclitary travelling waves is investigated by

searching for a solution dependent on the coordinate § = n,7; — ¢f, where ¢ is the modulus of

the velocity ¢; = ¢n; of these waves. Replacement of the differentiation operations: d.dt= —d

di. 0 0xr; = ndds enables the systen ¢f Egs.(1.8),(2.1),(2.6},(2.13) to be converted to the
following system of ordinary differential eguations

34 3 don Gir - s
nj—= =7 00 -—1](;)-—3/1——1 — 3n, = (5.1)
o
W . (5.2)
EE |
(5.3)
(3.4)
T TH
PR i o9 7 2 52 —n@
géj!(iu}—gi—J_ﬁ[At\&N‘j“—{E‘-xd—'\—f"’,—ujdi' =D

cpH? d ;odu; cpHﬁ &% ;0 du;
3 aiv‘“‘(i“‘ H/“\?n =T raGh

where 1 =1, for ndy;dE = 3hdndE ~ 3n,du; d&. After eliminating the variable ¢; Egs.({5.1),
(5.2) reduce to the following

;o dup du; 3¢ n,
» oa .e . [t
- k""?f/) — o wu._,(ﬁ/, — H)—— — o (=) — oy (0 — ) (5.5}

On the other hand, we eliminate ¢; and <{pd> frem (5.3) by using (5.1} and {5.4)
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du; & du, YeHA gt du,
3671,-?‘-‘20”(/14‘—2’!)-75?(",—&%)-{-—5—-?‘? (n,-TE‘)— (5.8)
(]
' ° 3c
Z’.ak?-*-"ivi — g (h—ne)=0
=0
00=%, 01-’=-%H293gs a;=2c(3h— H)
6y =2 Hig,min, a.=cH(4h’-‘—3hH~?-%H2)
2 2
ﬂ5=-P—H20, a5=——5£—hH‘
Solving (5.5) for n;du;dt and substituting the result into (5.6), we obtain after some
reduction
RN s SA 3eny
LA N En an e
(1 ‘szi)Zak qek ch" =k 4H T (5.7)
k=0 h k=0 hd
—i- n;(v;" - 3u ) =0
‘9
b0=77,—, b2=3(H—r211)

bo= HI(H + 2h) + 3 gH2), by = by = b, =0, bg =
1 HY (H + 2h)

The equation obtained can be solved in the form of a solitary travelling wave in the
case when the inhomogeneous terms vanish. The corresponding condition results in the following
expression for the wave velocity:

o= — A (v + 3u) (5.8)

It hence follows that for ¢,° =0 the velocity vector of the solitary tectonic wave is
collinear with the velocity vector wuw of the stationary displacement of the lithosphere
relative to the mesosphere if the deflection 1, of the lithosphere that caused it is
negative, if its bending to a free surface occurs. If 1, >0 ,the velocity ¢; is opposite
to uy Eq.(5.8) shows that ¢ ~ 10 — 100 km/yr for physically justified values of the
ratio (v = 3w)n, The velocity c of the sclitary wave thereby corresponds in order of
magnitude tc the velocity of a D-wave that is exposed in the distribution of the strongest
local earthguakes, but its direction is not at all along the meridian here as is asserted
in /8/.

Solutions of (5.7) are the sum of the exponential solutions %, = M. * exp (k.8), n =1, 2,

.., 1, where k, are the roots of the corresponding characteristic equation. For those for which
the magnitude is estimated by the condition k. H <1, the eguation (5.7) is replaced
approximately by the following:

. 3vpcH L d¥) ;o P2z g\ AN 3 __ {5.9)
H(se— 28 o =3 5 — L) — =0 -9

For the values ¢~ 30 km/yr, p/E ~ 3 years the characteristic Eg. (5.9) yields the
following roots: k;,~ 1073 ™%, kg ~ A; ~ 100 km. This means that the effective width cf the
solitary wave is of the order of 200 km. The general rule for the estimate is 7 ~ pc E. from
which it follows, in particular, that as the asthenosphere viscosity § decreases or the
lithosphere stiffness ¢ increases, the wavelength of the solitary wave decreases although its
velocity remains unchanged.

In conformity with the theory being developed, sclitary tectonic waves do not damp out
because of the transfer of energy from the asthencspheric flow that compensates for the
viscous dissipation. Therefore, the "lithosphere slab + asthenosphere flow" system is a
"self-wave" system in the broad sense of this word /9/.

The authors are grateful tc I.A. Garagash for discussing the research.
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GENERALIZED DYNAMIC PROBLEM OF THERMOELASTICITY FOR A
HALF- SPACE HEATED BY LASER RADIATION*

M,S. BOIKO

A generalized dynamic problem of thermoelasticity is solved for a half-
space heated by laser radiation. Expressions for the displacements in
the Rayleigh wave are obtained. The asymptotic form of the solution at
a point at infinity is studied. It is shown that the magnitude of the
displacements at the wave fronts depends essentially onthe value of the
rate of propagation of heat.

1. Formulation of the problem. Let a beam of radiant energy fall, at the instant
T=0, on acircular region of a plane boundary of an elastic half-space. The position of
every point of it is determined by the coordinates p,z 6, of a cylindrical coordinate system.
The radiation intensity volume density of the beam is

o ge O<So<K R, o
Qt'(f)‘ T):Qx (3") H (‘) 51 ({“3}2 {n‘ p> RG (1.1}
(H (1) is Heaviside's function). We reguire to find the elastic stresses and displacements
in the half-space when the radiant energy is absorbed., The variationin the temperature field

caused by the deformation is ignorded.
The solution of this problem can be reduced to solving the following set of Egs. /1/:

i - AT ,' - AT ".‘ - N B g - Ay
A=l =m (DT =0, A =0 (1.2
K o1 ! % ot A a T,

B 3. =~ 2
Tl trerr T H

Here ¢. ¥ are the displacement potentials, t is temperature, ¢;. ¢ are the velocities
of the longitudinal and transverse wave, I, is the thermal flux relaxation time, a is the
thermal conductivity, 7. u are the Lamé coefficients, is the coefficient of thermal

expansion, and A is the Laplace operator,
The solutions of the system must satisfy the following boundary and initial conditions:

o= O =0, — At = lg, (1.3)
a1 ax at

(0;; is the thermoelastic stress tensor, 7 is the absorption capacity and Ay is the
thermal conductivity.

2. Construction of the solution. we shall construct the selution of the problem
using the contour-integral method /2/. Let us write the sclution sought in the form of the
Fourier-Bessel transform

*pyrikl.Matem.Hekhan.,498,3,470-475,1985,



