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THEORY OF FAST TECTONIC WAVES* 

V.N. NIROLAYEVSKIIand T.K. RAMAZANOV 

A two-dimensional model is proposed for the propagation of tectonic stress 
waves that are the trigger of earthquakes in seismcactive regions, and 
are due to bending-compression of the lithospheric slab on the asthenospheric 
surface flow thereby neglecting inertia forces. The lithosphere is 
modelled by a thin elastic slab, andtheasthenosphere by the flow of a 
highly viscous incompressible fluid. Their interaction occurs because of 
the presence of a vertical shift and the action of viscous tangential 
forces on the lithosphere-asthenosphere interface. To obtain a system 
of linear equations, longitudinal andtransverse potentials are introduced. 
The periodic low-intensity waves turn out to be standing waves, although 
also diffusely expanding if there is just no solid-body displacement of 
the lithosphere on the asthenosphere. If motion of the lithosphere over 
the earth's crust exists, then solitary waves are possible that take their 
energy from the stationary asthenospheric flow. 

The tectonic waves under consideration /1,2/ with characteristic 
periods of 2,3,6 ,li years and propagation velocities of lo-100 km&r are 
extremely slow compared with seismic waves, but are sufficiently rapid in 
the time scale of crdinary tectonic processes, comprising millions of 
years. The reality of the existence of such waves can be judged, for 
instance, from the recently detected /3i change of the tectonic stresses 
(with an 11 year cycle and an amplitude of the order of 0.1 GPa) in the 
subductable lithospheric slabs. The characteristic shear modulus G of the 
lithosphere and the viscosity LL of the asthenosphere are estimated by 
the n*umbers 3.11'" Pa and 111:~ Pa.sec, and 101o Pa and 1~0‘ Pa.sec, 
respectively; consequently, the relaxation time 1' I; of processes in the 
lithcsphere has the requisite order of from 1 - 30 years only for *he 
"lithosphere + aszhenosphere" complex. This suggests the construction 
cf an adequate model of the process by analogy with surface waves on a 
moving film of fluid iSi', but 5y replacing the capillary layer by an eiastic 
plate. The adequacy of such an apprcach was confi,rmed by a simple 
preliminary analysis j2/ cf a one-Zimensicnal process. Meanwhile, the 
actual processes ocCur along two-dimensicnal lithospheric slabs, which 
requires the ccnsrructicn of a two-dimensicnal theory as well as a more 
carefzl ciasiderazicx cf the forces actinqor.t.he lithospheric slab. 

1. In constructing the thecry we bear in mind that the width of the lithosphere 2h _ ant 
t??e asthenosphere 2H, of the crder of 100 km, the velccity L.'- 1Clcm/yr of the stationary 
fiow inthe asthenosphere, a?,C the lithosphere rate ci rise '1. - 10 - lOi1 cm'vr , are , _ 
measurabie, however, for real, i.e., not ideally elastic systems. 

We cons;der the strair. zf a thin elastic slat (X- = lj ficating on a viscous incompressible 
fluid layer (ii = 2) (see the f:g.;re). WE rqlecr inertia fGrCes x the mcment'jn: balarLe 

equations but WE t&c accczr,: cf the gravity fcrcea 

where al,,,lB) are the stress tensors, $1,: is the density, g,= g is the acceleration due to gravity, 

6 i", is the unit tenser, where the z,.rp axes are in the horizontai plane while the fa 

axis iS directed intc the depth. S~zmmation is over the subscript m. Averaging of il.11 over 

the transverse iayer thickness zQ1'l) < r3 < x3"') conzects the total stresses l\ii,"jin the 
transverse layer secticns with the contact forces 



Here n is the deflection of the plate middle surface 
r&21) = h +. ,,, @?i =i 12 7 2X.3. is the wavelength, i. j = 1, 

q<h- H a; h?, 3p) =: -_h - q, 13(1?) ;z: 

2. 
We seek the field of horizontal velocities in the liquid layer in the form 

where Ci(Xj,h+ n, t) is the non-stationary horizontal shift of 
the lithosphere in the plane of contact with the asthenosphere, 
and aq,af is the non-stationary head velocity component due 

t to the ascent (descent) of the lithospheric slab. Thestationary 
(i>O) lithosphere Z_C~ and asthenosphere Vi0 velocities 
satisfy the continuity equation a~i=.k3xi = O,driO&f = 0 in a 
two-dimensional plane, and are of the same order of magnitude 
in absolute value as the non-stationary velocities: no- WC- 
ar"at - ag Lit. 

Integration of the continuity equation ai-,'ar, = 0 across 
the liquid layer connects the mean velocity (I.~) with the values t‘$ on the horizontal 
boundaries 

0 <I'>) 
7 

+-&+ti,-W/)-Ifflc- Il))=:", (1.4) 

h"1W 

(e,?=-&- $ L.,dJ3 

h-r, 

Substituting (1.3) intc (1.41, taking the eqmlities rs{h - ~1) a &jdt, r,(h - 2H) =0 
into account, we rec?iice (1.4) to the equation 

for the vertical displacement ?I on the contact between the asthenosphere and the lithcsphere, 
neglecting second- and higher-order infinitesimal terms. 

Tie fluid is assume5 to be Newtonian, i.e., 

where p is the pressilre. Because cf the representaticn (1.3) we hence obtain expressions for 
the contact stres5es as well as for tie average stresses (with respect tc the width of the 
asthenospheric layer) 

$1.. 
og (X;, it - q, ti I - p - “!t & 11.7) 
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Substituting (1.7) into (1.2) an6 eliminating the vertical displacement by using (I,5), 
We reduce the average flow eqiiations in the asthenosphere to the simple form 

Wi 
c,o - 7 - H+((.,_+p,j = - F !$- (1.8) 

1 
where V2 is the two-dimensional Laplace operator. 
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2. We shall give the displacement distribution in the lithosphere according to the 
Kirchhoff-Love hypothesis /5/c;= pi- X&‘8X:, where ui is the displacement in the middle 
plane. Hence, (1.5) takes its final form 

~-I~H-$~~~..---H ” 
7i+ -f -+%)=o (2.11 

Furthermore, the elastic stresses are defined by Hooke's Law /5/ 

where e&j is the strain of the middle plane that is thereby related to the total stress in 
the lithosphere 

*‘ii=+!!& [(I - V)elj j Yes,,] (2.3' 

Here E is Younc;'s modulus of the slab, and v is its Poisson's ratio. 
To find the cor,tact stresses in (1.3) for the horizontal lithosphere motion (k = i), the 

continuity conditions should be used for the forces at the contact 

*:;)=.g - (&'_..(Ja:?,') -g + (a:;) - O:I)) +$ (2.4) 

c(l) (:) 23 = O?3 - (O$-OFJ -$J- T (u~;-&$ ( $3 - c$ (l'- " 
1 

and the ar,alogom cc. Idlticns on the boundasy Jg = -1: J- 11 

where Q1l,Qzz axe the overlca? cOnFOnents. .S.abstituting (2.3)-Ii.51 into (1.2:. and taking 
the representations (1.7) and (2.2) in?0 accO:r.t, we obtain after linearization 

where products of the type [p (x,. h - q. tl (Ei:)l 8q’cbi have also been neglected. 
TG find the slab bendicg equations we 'use a weli-knnwr. method /6,. We substitute (2.2; 

Into the first twc _ ec.cilitrius Eos.:i.;: fcr k=i 

Intecrating -' :2.., :cr a Lrariatle upper Irmit in xQ enables the stresses themselves oig(iJ 
t0 be expressed in terms Of the vertical dispiacement an3 . ti?e ccntact stress. Substituting 

the result in the t?l;rd egllatior. cf (1. i) and integrating 
q tkie latter with respect to z3 

between -4 - q a;.5 ii - 9 we obtain the bending equation 

FTJrthermcre, b.y cOndiri0r.s i2.4) and (2.51 ane the representations (1.2) ,(1.7),(2.2: an3 
(2.3), both the VLSCCJS and the tctal horizontal forces can be introduced directly into (2.6). 

After sOme reduczicn, we Obta;r., neglecting squares Of t; ?e perturbations of the variables in 

(2.81, 
p* %s p(i; I? - '1.1)= 76'rgii - Q - DP'l -- i2.7) 

lli,i_:i-~:!~~~ll-Ji,r~- il dIZOII ~[tP*-eJ~j- 

,, : 2 _ L’\ @gs 62?11 WJ 
i 2H ; Of tii 2H df ori 

where .v,t (2h) cOrres;cnds to the inrtial state of stress of the slab. 
We integrate the tl?irS eg.xtion in (1.1) an8 the continuity equation with respect tc the 

variable z3 for k = Z? 
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(2.11) 

Substituting (2.11) into (2.10), taking account of (1.3), and integrating the result 

over the intensity of the liquid layer, we obtain the following relationship between the 

contact and mean pressures: 

,*=<,>-,*g(H-~~)+~~+~jh-~~)~~~l)- (2.12) 

phH2 8 alUi 
--~Y%--p-gYg- J 

/ W ” v:23 
5 dt 1 azi 

On the basis of (2.12), the bending Eq.(2.9) is converted to the form 

(P)~4-$P*g,,-~Y~i~.)h_~H+~)$C2t11. 
2H af 

(2.13) 

phHz a C+_D+&!!& -- 
5 bl 1 I 

-p(l+&)&- 

Ep-~2!&&$_ 

(9 = ad T p*igH + Qf -qlj = Xij, + h (2P& i- 0) bij-Oij) 

Therefore, a closed system of equations of motion of the asthenospheric fluid (1.8),(2.1) 
and of the non-stationary strain Eqs.(2.6!, (2.13) of the lithospheric slab for the six desired 
variables q, ui, v,, @> is obtained. 

3. We introduce the wave potentials 0 and g' such that 

aa, dv aa, a\y 
u1=--;;;;, OZl 

u?=--;-- 
02 d=l (3.1) 

Then after eliminating the variables ui,(p) the equations of motion mentioned are 
separated. The first equation is obtained from (2.6) and corresponds to the non-stationary 
redistribution of the rotational potential 

where tJlj is an alternating tensor. Applying the vortex operaticn to (1.8) and using 
reiationship (3.2), we obtain 

It can therefore be seen that shear perturbations cannot result in a rise in the middle 
plane of the lithosphere; such motions are separated off from the bending. If free vibrations 
corresponding to (3.3) (without taking account of the stationary shear motion of the 
lithosphere) are sought in the form 9' = V',erp [i (kjX/ - ot)], we obtain the dispersion relation 

w p _ 4 (3 - @Hi! i:-'r,l/ 
(r 3 + 4k=H: 

, k2 = it12 + Ii22 (3.4) 

which means that the shear tectonic wave is not a travelling wave: the initial perturbations 
damp out "on the spot" without translational shifts. 

Eqs.CZ.1) and (2.6) yield for the longitudinal wave potential Q, 

x~'UJ-~~~?U,-(-~~~-HH)$~~~~~~=O (3.5) 

If the deflection n is identically zero, (2.6) reduces to the well-known Eq./l/ of 
tectonic waves for the simple horizontai compression-tension of the lithosphere 

aw 
= P (1 - +) 34, 

0s EhH bI (3.6) 

In the general case (3.5) should be 
the form 

supplemented by (2.11, which we will now write in 



(3.7) 

as well as by the result of applying the divergence operation to the viscous asthenosphere 
flow Eq.cl.8). Taking account of (3.7) we write that equation in the form 

3H -$ cw - H (312 -H~j+,-3~+~~(~) (3.8) 

which in combination with (3.5) determines the effective system of two equations for the 
deflection n and the potential 0. 

4. We consider space-time longitudinal tectonic perturbations of the type @ = @,,espii 
(kjX, - ot)l* 11 = II* esp 12 (kjrj - &)I. Then taking account of (2.13) we reduce (3.51 and (3.8) 
to a homogeneous algebraic system 

z&+?(xh_" - 2io) 0, - io I3 - 2H (2h q- H) k’I$ = 0 is.1: 
i@Hk” [Is - 1OH (H - 2/a) k’ - 2H’k’I a* -; (LO 115 - 

10s (3h - H) k? Y H? (2OhH + 20h’ 7- 7H’) ka - 

2hH5ksI - 5 (k”,~) Wf‘f q* = 0 
lw = 2DHk’ - 2Hg+,k, 2 3Hp,g 

if qijt rjc, u.,’ are constants; summation is over the subscripts i, j. System (4.1) has a 
non-trivial solution if the following dispersion equation is satisfied: 

(I,,; _ I(I(I~"~ _ 2H'k" - L#ka)x-_ (4.2) 
4/&i.: _ 

It can be shown that for real values of the parameters of the "lithosphere +asthenosphere" 
system, the roots of this equation will correspond to long standing waves i,>2H, which can 
be extended but not displaced translationally. 

Indeed, for i ; ?I!. Ii - il. fl - 11 :' Pa, 3!I,r~! - I~I'Q Pa, \.? - U,l. yi, - Ztuld Pa.m we have real 
roots, where 1 >(I although it was assumed in the very derivation of the resultative equations 
that i. > ZH. 

Another version of the analysis i'J/ showed that for i. ( ?/I the deduction concerning 
no translational displacement remains valid. The origin cf travelling eaves is explained by 
the action of either a large initial horizontal force .\., or constant asthenospheric flows 
apparently caused by a shift of the lithosphere. 

5. The possibility of *he exlstenc e of sczriary travellfng waves is investigated by 

searching for a solution dependen: on the coordinate i = ~~~~~ -cl. where c is the modulus of 
the velocity r, = C/I, of these waves. Replacement of the differentiation operations:a.dt= -cd 
dz. ti VI, = n,d dt ena5les the system cf Eqs.!l.Ej, (2.1),(2.6!,(2.i3) to be converted to the 
foliowing system of ordinary differential eqnations 

(5.31 

(5.4) 

where 11 = no for ni&, dE = 3hd’q d;’ - 3n,du, d& After eliminating the variabi.e C&i Eqs.(5.13, 
(5.2) reduce to the foilowing 

On the other hand, we elrminate qr and (p) from (5.3) by using (5.11 and (5.4) 
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i > 
niz - 
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(5.6) 

ilo=+ ( al==- ; How. ag=2c(3h-H) 

as = t H’q,,nin,, a, = cH (4h’ I 3hH I f Hz) 

i 
a5=- ~ HzD, as=GhH4 

Solving (5.5) for nidui'd! and substituting the result into (5.6), we obtain after some 

reduction 

(5.7) 

+n, (r,’ - 3w,“) = 0 

ba+, b0=3(H ;- 211) 

b, = H [(H + ah)2 + 3.*loHzJ, b, = b, = b, = 0. b, = 

= sH’ (H + 2h) 

The equation obtained can be solved in the form of a Solitary travelling wave in the 
case when the inhomogeneous terms vanish. The corresponding condition results in the following 

expression for the wave velocity: 

ci = - $ (C,C -L 32&y (5.8) 

It hence follows that for uio = 0 the velocity vector of the solitary tectonic wave is 
collinear with the velocity vector u.~' of the stationary displacement of the lithosphere 
relative to the mesosphere if the deflection IlO of the lithosphere that caused it is 
negative, if its bending to a free surface occurs. If. vlO> O,the velocity ci is opposite 

to U', Eqn(5.8) shows that c- IO- 100 km/yr for physically justified values of the 
ratio (tic - 3~~')'n~. The velocity c of the solitary wave thereby corresponds in order of 
magnitude to the velocity of a D-wave that is exposed in the distribution of the strongest 
local earthquakes, but its direction is not at all along the meridian here as is asserted 
in /8/. 

Solutions of (5.7) are the sum of the exponential solutions +I" = n,.* exp(&;), n = 1, 2, 
. . ., 7,where Ii,, are the roots of the corresponding characteristic equation. For those for which 
the magnitude is estimated by the condition k,H < 1, the equation (5.7) is replaced 
approximately by the following: 

(5.9, 

For the values c- 30 km/yr, p!E - 3 years the characteristic Eq.(5.9) yields the 
following roots: k,,:- lO+m-', ?.I- i.? -100 km. This means that the effective width cf the 
solitary wave is of the order of 200 km. The general rule for the estimate is i.- ycE. from 
which it follows, in particular, that as the asthenosphere viscosity p decreases or the 
lithosphere stiffness C- increases, the wavelength of the solitary wave decreases although its 
velocity remains unchanged. 

In conformity with the theory being developed, solitary tectonic waves do not damp out 
because of the transfer of energy from 'be asthenospheric flow that compensates for the 
viscous dissipation. Therefore, the "lithosphere slab + asthenosphere flow" system is a 
"self-wave" system in the broad sense of this word /9/. 

The authors are grateful tc I.A. Garagash for discussing the research. 
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~E~ER~LI~~ DYNAMIC PR~BL~ OF THE~~E~STICITY FOR A 
HALF-SPACE HEATED BY LASER R~IATION* 

M.S. BOIKO 

A generalized dynamic problem of thermoelasticity is solved for a half- 
space heated by laser radiation. Expressions for the displacements in 
the Rayleigh wave are obtained. The asymptotic form of the solution at 
a point at infinity is studied. It is shown that the magnitude of the 
displacements at the wave fronts depends essentially onthe value of the 
rate of propagation of heat. 

1. Formulation of the problem. Let a beam of radiant energy fall, at the instant 
r==0, on acircular region of a plane boundary of an elastic half-space. The position of 
every point of it is determined by the coordinates p.z.8, of a cylindrical coordinate system. 
The radiation intensity volume density of the beam is 

(H (4 is Heaviside's function). We require to find the elastic stresses and displacements 
in the half-space when the radiant energy 1s absorbed. The variationinthe temperature field 
caused by the deformation is ignorded. 

The solution of this prcblez can be reduced to solving the following set of Eqs. il/: 

Here Cb. Y axe the displacement potentials, t: is temperature, Cl. Co are the velocities 

of the longitudinal and transverse wave, 1, is the thermal flux relaxation time, a is the 
thermal conductivity, i.. ;i are the Lam> coefficients, a! is the coefficient of thermal 

expansion, and 1 is the Laplace operator. 
The solutions of the system must satisfy the following boundary and initial conditions: 

azz =op* - -0, -Q.$, tt&, (1.3) 

~=Y'~~-z__--d" dy -0 -dT_-?&-~~-. Cl.41 

t”ij is the thermoelastic stress tensor, n is the absorption capacity and h, is the 

thermal conductivity. 

2. Construction of the solution. we shall construct the solution of the problem 
using the contour-integral method /2/. Let us write the solution sought in the form of the 
Fourier-Bessel transform 


